Marginal maximum likelihood estimation of conditional autoregressive models with missing data
نویسندگان
چکیده
منابع مشابه
Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملMaximum Likelihood Estimation for Directional Conditionally Autoregressive Models
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed using only the inter-distances between the regions. To accommodate the effect of directions, a new class of spatial models is developed using different weights given to neighbors in different direct...
متن کاملMaximum Likelihood Estimation for Generalized Autoregressive Score Models
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the filter can be substantially different from those of the DGP. This difference is particularly relevant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stat
سال: 2019
ISSN: 2049-1573,2049-1573
DOI: 10.1002/sta4.226